Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Gut and Liver ; : 188-196, 2012.
Article in English | WPRIM | ID: wpr-19389

ABSTRACT

BACKGROUND/AIMS: Epigallocatechin-3-gallate (EGCG), the primary catechin in green tea, has anti-inflammatory and anti-oxidative properties. The aim of the current study was to characterize the impact of EGCG on lipopolysaccharide (LPS)-induced innate signaling in bone marrow-derived macrophages (BMMs) isolated from ICR mice. METHODS: The effect of EGCG on LPS-induced pro-inflammatory gene expression and nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinase (MAPK) signaling was examined using reverse transcription-polymerase chain reaction, Western blotting, immunofluorescence, and the electrophoretic mobility shift assay. RESULTS: EGCG inhibited accumulation of LPS-induced IL-12p40, IL-6, MCP-1, ICAM-1, and VCAM-1 mRNA in BMMs. EGCG blocked LPS-induced IkappaBalpha degradation and RelA nuclear translocation. EGCG blocked the DNA-binding activity of NF-kappaB. LPS-induced phosphorylation of ERK1/2, JNK, and p38 was inhibited by EGCG. U0126 (an inhibitor of MEK-1/2) suppressed the LPS-induced IL-12p40, IL-6, MCP-1, ICAM-1, and VCAM-1 mRNA accumulation in BMMs. CONCLUSIONS: These results indicate that EGCG may prevent LPS-induced pro-inflammatory gene expression through blocking NF-kappaB and MAPK signaling pathways in BMMs.


Subject(s)
Blotting, Western , Butadienes , Catechin , Fluorescent Antibody Technique , Gene Expression , I-kappa B Proteins , Intercellular Adhesion Molecule-1 , Interleukin-12 Subunit p40 , Interleukin-6 , Macrophages , NF-kappa B , Nitriles , Phosphorylation , Protein Kinases , RNA, Messenger , Tea , Vascular Cell Adhesion Molecule-1
SELECTION OF CITATIONS
SEARCH DETAIL